10 интересных экспериментов для детей. Для всех и обо всем

Мы предлагаем вашему вниманию 10 потрясающих фокусов-опытов, или научных шоу, которые можно сделать своими руками в домашних условиях.
На дне рождения ребенка, на выходных или на каникулах проведите время с пользой и станьте центром внимания множества глаз! 🙂

В подготовке поста нам помог опытный организатор научных шоу - профессор Николя . Он объяснил принципы, которые заложены в том или ином фокусе.

1 - Лавовая лампа

1. Наверняка многие из вас видели лампу, у которой внутри жидкость, имитирующая горячую лаву. Выглядит волшебно.

2. В подсолнечное масло наливается вода и добавляется пищевой краситель (красный или синий).

3. После этого добавляем в сосуд шипучего аспирина и наблюдаем поразительный эффект.

4. В ходе реакции подкрашенная вода поднимается и опускается по маслу, не смешиваясь с ним. А если выключить свет и включить фонарик - начнется «настоящая магия».

: «Вода и масло имеют разную плотность, к тому же обладают свойством не смешиваться, как бы мы ни трясли бутылку. Когда мы добавляем внутрь бутылки шипучие таблетки, они, растворяясь в воде, начинают выделять углекислый газ и приводят жидкость в движение».

Хотите устроить настоящее научное шоу? Больше опытов можно найти в книге .

2 - Опыт с газировкой

5. Наверняка дома или в соседнем магазине для праздника найдется несколько банок с газировкой. Прежде чем выпить их, задайте ребятам вопрос: «Что будет, если погрузить банки с газировкой в воду?»
Утонут? Будут плавать? Зависит от газировки.
Предложите детям заранее угадать, что произойдет с той или иной банкой и проведите опыт.

6. Берем банки и аккуратно опускаем в воду.

7. Оказывается, несмотря на одинаковый объем, они имеют разный вес. Именно поэтому одни банки тонут, а другие нет.

Комментарий профессора Николя : «Все наши банки имеют одинаковый объем, но вот масса у каждой банки различная, а это значит, что и плотность отличается. Что такое плотность? Это значение массы, поделенное на объем. Так как объем у всех банок одинаковый, то плотность будет выше у той из них, чья масса больше.
Будет ли банка плавать в контейнере или же утонет, зависит от отношения ее плотности к плотности воды. Если плотность банки меньше, то она будет находиться на поверхности, в противном случае банка пойдет ко дну.
Но за счет чего банка с обычной колой плотнее (тяжелее), чем банка с диетическим напитком?
Всё дело в сахаре! В отличие от обычной колы, где в качестве подсластителя используется сахарный песок, в диетическую добавляют специальный сахарозаменитель, который весит намного меньше. Так сколько же сахара в обычной банке с газировкой? Разница в массе между обычной газировкой и ее диетическим аналогом даст нам ответ!»

3 - Крышка из бумаги

Задайте присутствующим вопрос: «Что будет, если перевернуть стакан с водой?» Конечно, она выльется! А если прижать бумагу к стакану и перевернуть его? Бумага упадет и вода все равно прольется на пол? Давайте проверим.

10. Аккуратно вырезаем бумагу.

11. Кладем сверху на стакан.

12. И аккуратно переворачиваем стакан. Бумага прилипла к стакану, как намагниченная, и вода не выливается. Чудеса!

Комментарий профессора Николя : «Хоть это и не так очевидно, но на самом деле мы находимся в самом настоящем океане, только в этом океане не вода, а воздух, который давит на все предметы, в том числе и на нас с вами, просто мы уже так привыкли к этому давлению, что совсем его не замечаем. Когда мы накрываем стакан с водой листком бумаги и переворачиваем, то на лист с одной стороны давит вода, а с другой стороны (с самого низу) - воздух! Давление воздуха оказалось больше давления воды в стакане, вот листок и не падает».

4 - Мыльный вулкан

Как устроить дома извержение маленького вулкана?

14. Вам понадобится сода, уксус, немного моющей химии для посуды и картон.

16. Разводим уксус в воде, добавляем моющей жидкости и подкрашиваем все йодом.

17. Оборачиваем все темным картоном - это будет «тело» вулкана. Щепотка соды падает в стакан, и вулкан начинает извергаться.

Комментарий профессора Николя : «В результате взаимодействия уксуса с содой возникает настоящая химическая реакция с выделением углекислого газа. А жидкое мыло и краситель, взаимодействуя с углекислым газом, образуют цветную мыльную пену - вот и извержение».

5 - Насос из свечи

Может ли свечка изменить законы гравитации и поднять воду вверх?

19. Ставим свечку на блюдце и зажигаем ее.

20. Наливаем подкрашенную воду на блюдце.

21. Накрываем свечу стаканом. Через некоторое время вода втянется внутрь стакана вопреки законам гравитации.

Комментарий профессора Николя : «Что делает насос? Меняет давление: увеличивает (тогда вода или воздух начинают «убегать») или, наоборот, уменьшает (тогда газ или жидкость начинают «прибывать»). Когда мы накрыли горящую свечу стаканом, свеча потухла, воздух внутри стакана остыл, и поэтому давление уменьшилось, вот вода из миски и стала всасываться внутрь».

Игры и опыты с водой и огнем есть в книге «Эксперименты профессора Николя» .

6 - Вода в решете

Продолжаем изучать магические свойства воды и окружающих предметов. Попросите кого-то из присутствующих натянуть бинт и полейте через него воду. Как мы видим - она без всякого труда проходит через отверстия в бинте.
Поспорьте с окружающими, что сможете сделать так, что вода не будет проходить через бинт без всяких дополнительных приемов.

22. Отрежьте кусок бинта.

23. Оберните бинтом стакан или бокал для шампанского.

24. Переворачивайте бокал - вода не выливается!

Комментарий профессора Николя : «Благодаря такому свойству воды, как поверхностное натяжение, молекулы воды хотят все время находиться вместе и их не так просто разлучить (вот такие они замечательные подружки!). И если размер отверстий небольшой (как в нашем случае), то пленка не рвется даже под тяжестью воды!»

7 - Водолазный колокол

И чтобы закрепить за вами почетное звание Мага Воды и Повелителя Стихий, пообещайте, что сможете доставить бумагу на дно любого океана (или ванны или даже тазика), не замочив ее.

25. Пусть присутствующие напишут свои имена на листе бумаги.

26. Сворачиваем листок, убираем его в стакан, чтобы он упирался в его стенки и не скользил вниз. Погружаем листок в перевернутом стакане на дно резервуара.

27. Бумага остается сухой - вода не может до нее добраться! После того как вытащите листок - дайте зрителям удостовериться, что он действительно сухой.

Текст: Катя Чекушина
Иллюстрации: Влад Лесников


Эксперимент №1


Французский исследователь Дидье Дезор из Университета Нанси опубликовал в 1994 году любопытную работу под названием «Исследование социальной иерархии крыс в опытах с погружением в воду».

Изначально в опыте участвовало шесть классических белых лабораторных крыс. Когда приходило время кормежки, их помещали в стеклянный ящик с единственным выходом наверху. Этот выход представлял собой тоннель-лестницу, спускавшуюся на дно соседнего стеклянного резервуара, наполовину наполненного водой. На стене резервуара с водой размещалась кормушка, к которой крыса, вынырнув из тоннеля на дне, могла подплыть и выхватить оттуда галету. Однако, чтобы съесть ее, животному необходимо было вернуться обратно на твердую поверхность лестницы.

Очень быстро среди шести участников этого эксперимента сформировалась четкая иерархия. Две крысы стали «эксплуататорами»: сами они не плавали, а отнимали еду у трех эксплуатируемых пловцов. Шестая же крыса выбрала стратегию самообеспечения: она ныряла за галетами и успешно защищала их от рэкета. Самое удивительное состояло в том, что, сколько бы ученый ни повторял эксперимент с разными крысами, в итоге происходило точно такое же распределение ролей! Даже когда в группе объединяли только эксплуататоров, только рабов или только независимых, их сообщество возвращалось к исходной иерархии. Если же группу увеличивали, результат получался еще более впечатляющий. Доктор Дезор посадил в испытательную клетку двести крыс. Они дрались всю ночь. Утром там лежали три бездыханные жертвы социального катаклизма, а в крысином сообществе сформировалась сложная система подчинения. «Генералам» еду приносили «лейтенанты», которые отбирали ее у рабочих пловцов. При этом кроме «автономных», образовался еще и класс «попрошаек»: они не плавали и не дрались, а питались крошками с пола. Конечно, доктор Дезор не был бы настоящим ученым, если бы (используем эвфемизм, принятый в научной среде) не пожертвовал своих подопытных науке. После препарирования выяснилось, что все крысы в процессе эксперимента испытывали повышенный уровень стресса. Однако больше всех страдали вовсе не угнетенные пловцы, а эксплуататоры!

В свое время эта работа произвела много шуму, ученые-бихевиористы делали самые мрачные выводы о судьбе общества, бесполезности революций и генетически заложенном в нас инстинкте социальной несправедливости. Взгляд, конечно, мелкобуржуазный, но, думается, что-то в этом есть.


Эксперимент №2


Впрочем, крысиная жизнь не всегда ужасна. Возьмем, к примеру, недавний эксперимент в Политехническом университете провинции Марке, Италия, в ходе которого ни одно животное не пострадало. Скорее наоборот. В процессе опытов крысы на протяжении десяти дней вместе с основной пищей употребляли клубничное пюре из расчета 40 мг на кило веса. После этого им давали алкоголь. Контрольная группа в этот момент употребляла спирт без всяких клубничных церемоний. Правда, в конце всех счастливых участников эксперимента ждало похмелье, усугубленное изучением состояния слизистой их желудков, которое затеяли исследователи. Оказалось, что у крыс, употреблявших ягоды, снизилась вероятность возникновения язвы. «Позитивный эффект клубники заключается не только в содержащихся в ней антиоксидантах, - уверяет доктор Сара Тьюлпани, - но и в том, что она стимулирует выработку естественных ферментов в организме». Кто бы спорил! Мы тоже считаем, что в ходе экспериментов с алкоголем многие вещи кажутся очень позитивными. И клубника, безусловно, одна из них.


Эксперимент №3
Вселенная-25

Однажды доктор Джон Б. Калхун решил создать мышиный рай. Взял бак два на два метра, установил в нем перекрытия, проложил систему тоннелей с индивидуальными отсеками и поилками и в начале 1972 года запустил в этот рай четыре пары здоровых, генетически безупречных мышей. В баке всегда было +20 оС, каждый месяц его чистили и набивали кормом и материалом для гнезд. Во «Вселенной-25», как Калхун назвал бак, царил золотой век. Через сто дней, осознав свое счастье, грызуны начали бешено размножаться. Население удваивалось каждые 55 дней, и никакого изгнания за грехопадение не предвиделось. Однако еще в момент своего создания «вселенная» была обречена. Ведь номер 25 выбрали неслучайно. Это был уже 25-й эксперимент на крысах и мышах, и каждый раз рай превращался в ад. Мышам, к 315-му дню размножившимся до 600 особей, уже категорически не хватало пространства. Общество начало стремительно разрушаться. Сформировались любопытные классы: «нонконформисты», которые сгрудились в центре и регулярно нападали на владельцев гнезд, «прекрасные» - самцы, которые не интересовались размножением и ухаживали исключительно за собой, и, наконец, «средний класс», который пытался любой ценой сохранить привычный уклад. В баке процветало насилие, свальный грех и даже каннибализм. В конце концов 90% самок репродуктивного возраста покинули популяцию и поселились в изолированных гнездах в верхней части бака. На 560-й день со «Вселенной-25» фактически было покончено. Популяция достигла пика в 2200 особей, рождаемость упала, редкие беременности кончались убийством детенышей. Возросшая смертность не спасла рай: последние восемь мышей умерли одна за другой, так и не вернувшись к привычным ролям и не пытаясь завести детенышей! В своей работе «Плотность популяции и социальные патологии» Калхун вместе со «Вселенной-25» похоронил и все человечество: «Еще до того, как нам перестанет хватать ресурсов, люди задохнутся в своих городах!» Хотелось бы сказать: не дождется! Но…


Эксперимент №4


Возможно, ты слышал про классический эксперимент 50-х годов, в ходе которого психологи Олдс и Миллер нечаянно обнаружили в мозге у крыс зону «чистого счастья». Не будем преувеличивать благие намерения ученых: изначально они планировали доставить крысам боль. Однако, расположив электроды почти в самом центре мозга, ученые неожиданно обнаружили, что крыса снова и снова нажимает на рычаг, замыкающий электрическую цепь. Дальнейшие эксперименты показали, что некоторые особи готовы нажимать на рычаг практически беспрерывно, по 2000 раз в час, забыв про сон и еду. Ни половозрелые самки, ни физическая боль не могли остановить самца на пути к заветной «кнопке удовольствия». Лимбические зоны головного мозга, которые стимулировали у крыс в ходе этого эксперимента, сформировались на самой заре эволюции. Они есть у всех млекопитающих, включая человека, - правда, до сих пор не очень понятно, за что они отвечают. Так вот, недавно были обнародованы записи других ученых, которые не совсем легально проводили похожие опыты на гомосексуалистах и пациентах психиатрических лечебниц. Суть «чистого счастья» оказалась на редкость проста: люди описывали это ощущение как… восхитительный оргазм.


Эксперимент №5
Секс, наркотики, громкая музыка

Мы теряемся в догадках, что надоумило студентов Университета Бари в Италии проделать такое, но в сентяб­ре 2008 года в медицинской литературе появился отчет о «воздействии экстази и громкой музыки на сексуальное поведение белых крыс». Подопытным давали умеренную дозу наркотика, затем записывали изменения в их сексуальном поведении. Таковое отсутствовало. Ученые заключили, что под воздействием метилендиохиметамфетамина взрослые крысы теряют интерес к самкам. Но, если через час после приема наркотика громко включить ритмичную музыку, сексуальные контакты возобновляются. Доказывал этот опыт вред экстази или же пользу громкой музыки - медицинское сообщество до сих пор не решило.


Эксперимент №6


В 2007 году Ричард Хэнсон и Парвин Хакими из Университета Кейс Вестерн Резерв в Огайо модифицировали мышиный геном и вывели около 500 супермышей, которые были в несколько раз более выносливы, чем их сородичи. Мышиные супергерои не только могли бежать без отдыха в течение шести часов, в то время как обычная мышь выдыхается после получаса, но и жили дольше, сохраняя репродуктивные способности до самой старости, а также потребляли на 60% больше корма, чем контрольная группа, при этом оставаясь более стройными и спортивными. Замечательный эксперимент не только доказал, что посредством модификации всего одного гена можно существенно ускорить метаболизм живого существа, но и то, что людям в ближайшее время ничего такого не светит. Специальная комиссия сочла, что даже думать об этом неэтично. Так что даже не думай!


Эксперимент №7
Морфий и развлечения


В конце 1970-х годов канадский исследователь Брюс К. Александер пришел к выводу, что крысам не хватает развлечений (вообще-то создается ощущение, что к такому выводу пришли все ученые из нашей подборки и крысы тут совершенно ни при чем). Доктор Александер не был слишком оригинальным: он решил исследовать формирование наркотической зависимости. Канадский ученый вызвался доказать, что устойчивое привыкание крыс к наркотикам, которое доказывают многочисленные опыты, вызвано тем, что подопытные животные были заперты в тесных клетках и им не оставалось ничего другого, кроме как развлекать себя инъекциями. Для подтверждения своей теории доктор Александер построил своеобразный крысиный парк развлечений - просторное жилище, в котором были тоннели, беличьи колеса, мячи для игры, уютные гнезда и обилие пищи. Туда заселили 20 разнополых крыс. Контрольная же группа теснилась в классических клетках. И тем и другим были поставлены две поилки, в одной из которых была обычная вода, а в другой - подслащенный раствор морфия (крысы - сластены и поначалу отказываются пить наркотический раствор из-за его горечи). В итоге теория Александера полностью подтвердилась. Жители клеток очень быстро подсаживались на морфий, а вот счастливые обитатели парка поголовно игнорировали наркотик. Правда, некоторые из парковых крыс пробовали воду с морфием несколько раз, словно желая удостовериться в полученном эффекте (как правило, это были самки), но ни одна из них не показала признаков регулярной зависимости. Как и положено творцу, доктор Александер не мог отказать себе в удовольствии поиграть судьбами своих подопечных и на определенном этапе поменял местами некоторых парковых и клеточных крыс. Вполне логично, что грызуны, скоропостижно и необъяснимо оказавшиеся в стесненных жилищных условиях, немедленно пристрастились к морфию. А вот те, кто был перемещен в парк из клеток, оказались более хит­рыми. Они продолжали употреблять наркотик, только менее регулярно - ровно в той степени, чтобы сохранять эйфорию, но быть в состоянии исполнять свои основные социальные функции.

Вообще-то опыты доктора Александера кардинальным образом поколебали главенствующую в медицинских кругах теорию о химическом происхождении опиоидной зависимости, которую наркоман не в состоянии контролировать. Но научное сообщество сделало вид, будто ничего не было, эксперимент замяли. А вот мы не претендуем на научность, нам можно!


Эксперимент №8


Да, крысам удалось испытать то, что нам с тобой только снилось, - спаривание в невесомости! Дело, правда, оформлено второпях, так как опыт был сильно ограничен по времени: он происходил в рамках полетов специального экспериментального аппарата «Фотон». Возить крысиные клетки на МКС, где животные могли бы спариться с чувством, толком и расстановкой, - дело слишком дорогостоящее. Система крысиного жизнеобеспечения в невесомости занимает кучу места, а это самый важный ресурс на орбитальной станции. Можешь, кстати, гордиться: в деле секса в невесомости мы впереди планеты всей, так как именно наши ученые проводили этот опыт с крысами на «Фотоне». Увы, его результат вряд ли можно назвать удачным. По всем признакам, спаривание состоялось, однако беременности у самок так и не наступило. Впрочем, если отвлечься от крыс, в большинстве случаев это никак не минус, а очень даже плюс.


Эксперимент №9
Обжорство

Пожалуй, научным крысам удалось поучаствовать во всех грехах человечества (не без помощи ученых, конечно). Такой примитивный грех, как обжорство, тоже не обошли стороной. Для его полноценного воплощения братья Луис и Теодор Зукеры вывели специальных генетически модифицированных крыс, которые гордо носили имена своих создателей. Собственно, все предназначение зукеровских крыс состояло в том, чтобы всю жизнь поглощать пищу. Они обладали повышенным чувством голода и могли весить в два раза больше своих немодифицированных предков. Крысы поплатились за свои грехи еще в этой жизни: у них был повышенный уровень холестерина в крови и целый букет болезней.


Эксперимент №10
Эксперимент над экспериментатором

Логическим завершением этой череды беспощадных экспериментов над животными, мы считаем, стал эксперимент над людьми с участием крыс, который провел психолог доктор Розенталь в Гарварде в 1963 году. Он предложил своим студентам потренировать крыс проходить лабиринт. При этом половине студентов было сказано, что у них крысы специальной интеллектуальной породы, которая очень быстро обучается. Вторая половина студентов работала с «обычными крысами». После недельной тренировки учителя «интеллектуальных» грызунов получили ощутимо более высокие результаты, чем студенты, которые тренировали «обычных».

Как ты, вероятно, догадался, крысы были абсолютно одинаковыми. Что ж, во-первых, это доказывает, что никогда не надо верить первому встречному профессору и соглашаться на сомнительные эксперименты: не факт, что ты в итоге не окажешься их объектом. Во-вторых, верить и соглашаться - в некоторых случаях означает получать завышенный результат абсолютно на пустом месте!

Друзья, добрый день! Согласитесь, как же порой интересно удивлять наших крох! У них такая потешная реакция на . Она показывает, что они готовы учиться, готовы усваивать новый материал. Весь мир открывается в этот миг перед ними и для них! И мы, родители, выступаем в роли настоящих волшебников с шляпой, из которой «вытаскиваем» что-то потрясающе интересное, новое и очень важное!

Что мы сегодня достанем из «волшебной» шляпы? У нас там 25 экспериментальных опытов для детей и взрослых . Они будут подготовлены для малышей разного возраста, чтобы их заинтересовать и привлечь к процессу. Некоторые можно проводить безо всякой подготовки, при помощи сподручных средств, что у каждого из нас дома есть. Для других мы с вами прикупим некоторые материалы, чтобы у нас все гладко получилось. Ну что? Пожелаю всем нам удачи и вперед!

Сегодня будет настоящий праздник! И в программе у нас:


Так давайте украсим праздник, подготовив эксперимент на день рождения , Новый год, 8 марта и т.д.

Ледовые мыльные пузыри

Как вы думаете, что будет, если простые пузыри, которые кроха в 4 года так любит надувать, бегать за ними и лопать их, надуть на морозе. А вернее, прямо в снежный сугроб.

Даю подсказку:

  • они сразу лопнут!
  • взлетят и улетят!
  • замерзнут!

Чтобы вы ни выбрали, говорю сразу, это вас удивит! А представляете, что будет с маленьким?!

А вот в замедленной съемке – это прямо сказка!

Усложняю вопрос. А можно ли повторить опыт летом, с тем, чтобы получить аналогичный вариант?

Выбирайте ответы:

  • Да. Но нужен лед из холодильника.

Знаете, хоть мне так хочется вам рассказать все, но именно про это я и не сделаю! Пусть и для ваc будет хоть один сюрприз!

Бумага против воды


Нас ждет настоящий эксперимент . Неужели возможно, чтобы бумага победила воду? Это вызов всем, кто играет в «Камень-ножницы-бумага»!

Что нам понадобится:

  • Лист бумаги;
  • Вода в стакане.

Накройте стакан. Хорошо бы, если бы его края были немного влажные, тогда бумага прилипнет. Аккуратно переверните стакан… Вода не протекает!

Надуем шарики не дыша?


Мы уже проводили химические детские опыты. Помните, там самым первым для совсем маленьких крох был номер с уксусом и содой. Так вот, продолжаем! И используем энергию, а вернее, воздух, что высвобождается при реакции в мирно-надувательных целях.

Ингредиенты:

  • Сода;
  • Бутылка пластиковая;
  • Уксус;
  • Шарик.

В бутылку засыпать соду и залить уксусом на 1/3. Взболтать слегка и быстро на горлышко натянуть шарик. Когда он надуется, перевязать и снять с бутылки.

Такой опыт маленький сможет показать даже в детском саду .

Дождь из тучки


Нам нужно:

  • Банка с водой;
  • Пена для бритья;
  • Пищевой краситель (любого цвета, можно несколько цветов).

Делаем тучку из пены. Большую и красивую тучу! Поручите это самому лучшему тучкоделателю, вашему ребенку 5 лет . Уж он-то точно сделает ее настоящей!


автор фото

Осталось только распределить краситель по тучке, и… кап-кап! Пошел дождь!


Радуга



Возможно, физика ребятишкам еще неизвестна. Но после того, как они сделают Радугу, точно полюбят эту науку!

  • Глубокую прозрачную емкость с водой;
  • Зеркало;
  • Фонарь;
  • Бумагу.

На дно емкости помещаем зеркало. Под небольшим углом светим на зеркало фонариком. Осталось на бумагу поймать Радугу.

Еще проще — использовать диск и фонарик.

Кристаллы



Есть подобная, только уже готовая игра. Но наш опыт интересный тем, что мы сами, с самого начала вырастим кристаллы из соли в воде. Для этого возьмем нитку или проволоку. И подержим ее несколько дней в такой соленой воде, где соль уже не может раствориться, а накапливается слоем на проволоке.

Можно вырастить из сахара

Лавовая банка

Если в банку с водой добавить масло, оно все соберется сверху. Его можно подкрасить пищевым красителем. Но вот, чтобы яркое масло опустилось на дно, нужно поверх его насыпать соль. Тогда масло осядет. Но не надолго. Соль будет постепенно растворяться и «отпускать» красивые капельки масла. Цветное масло поднимается постепенно, словно внутри банки происходит загадочное бурление вулкана.

Извержение вулкана


Для карапузов 7 лет будет очень интересно что-то взорвать, снести, разрушить. Одним словом, настоящая стихия – это для них. а потому создаем настоящий, взрывающийся вулкан!

Из пластилина лепим или из картона мастерим «гору». Внутри ее помещаем баночку. Да так, чтобы ее горлышко подходило к «кратеру». Заполняем баночку соду, краситель, теплую воду и… уксус. И все начнет «взрываться, лава устремится вверх и затопит все вокруг!

Дырка в пакете – не беда


Именно в этом убеждает книга научных опытов для детей и взрослых Дмитрия Мохова «Простая наука». А проверить это утверждение мы сможем сами! Сначала наберем в пакет воды. а потом проткнем его. Но то, чем проткнули (карандаш, зубочистку или булавку) не будем убирать. Много ли воды у нас вытечет? Проверяем!

Вода, что не проливается



Только такую воду нужно еще изготовить.

Берем воду, краску и крахмал (столько, сколько и воды) и смешиваем. В итоге – обычная вода. Только пролить ее не получится!

«Скользкое» яйцо


Чтобы яйцо действительно пролезло в горлышко бутылки, стоит поджечь бумажку и бросить ее в бутылку. А отверстие прикрыть яйцом. Когда огонь потушится, яйцо проскользнет внутрь.

Снег летом



Этот трюк особенно интересно повторить в теплое время года. Содержимое подгузников вытащить и намочить водой. Все! Снег готов! Сейчас такой снег легко найти в магазине в детских игрушках. Спросите у продавца искусственный снег. И не нужно портить подгузники.

Движущиеся змеи

Для изготовление движущейся фигуры нам понадобится:

  • Песок;
  • Спирт;
  • Сахар;
  • Сода;
  • Огонь.

На горку песка налить спирт и дать пропитаться. Потом насыпать сверху сахар и соду, и поджечь! Ох, какой же веселый этот эксперимент! Деткам и взрослым понравится, что вытворяет ожившая змея!

Конечно, это для детей постарше. Да и выглядит довольно страшно!

Поезд из батарейки



Медная проволока, которую мы скрутим ровной спиралью, станет у нас тоннелем. Как? Соединим ее края, образуя круглый тоннель. Но до этого «запускаем» внутрь батарейку, только крепим к ее краям неодимовые магниты. И считайте, что изобрели вечный двигатель! Паровоз сам поехал.

Качели из свечи



Чтобы зажечь оба края свечи, нужно очистить низ ее до фитиля от воска. Нагреть над огнем иглу и проткнуть ею свечу посередине. Положить свечу на 2 бокала, чтобы она опиралась на иголку. Поджечь края и слегка качнуть. Дальше сама свеча будет раскачиваться.

Паста для зубов слона


Слону нужно все большое и много. Делаем! Растворяем марганцовку в воде. Добавляем жидкое мыло. Последний ингредиент – перекись водорода – превращает нашу смесь в гигантскую слоновью пасту!

Поим свечу


Для большего эффекта воду окрашиваем в яркий цвет. Ставим посередине блюдечка свечу. Поджигаем ее и накрываем прозрачной емкостью. Наливаем воду в блюдечко. Сначала вода будет вокруг емкости, но потом вся пропитается внутрь, к свече.
Сжигается кислород, давление внутри стакана снижается и

Настоящий хамелеон



Что поможет нашему хамелеону менять окрас? Хитрость! Поручите своему карапузу 6 лет разукрасить в разные цвета пластиковую тарелку. А сами вырежьте фигуру хамелеона на другой тарелке, похожей и по форме, и по размеру. Осталось не крепко соединить обе тарелки по середине так, чтобы верхняя, с вырезанной фигурой, могла вращаться. Тогда окрас зверька всегда будет меняться.

Зажигаем радугу


Выложить на тарелке по кругу драже Skittles. Внутрь тарелки налить воды. осталось немного подождать и получаем радугу!

Дым кольцами


Отрезать низ пластиковой бутылки. А край натянуть разрезанный воздушный шарик, чтобы получить мембрану, как на фото. Зажечь ароматическую палочку и поместить ее в бутылку. Закрыть крышку. Когда в банке будет сплошной дым, открутить крышку и постукивать по мембране. Дым будет выходить кольцами.

Разноцветная жидкость

Чтобы все эффектней смотрелось, жидкость покрасить в разные цвета. Сделать 2-3 заготовки разноцветной воды. налить на дно банки воду одного цвета. Потом аккуратно, по стенке с разных сторон залить растительное масло. Поверх его залить воду, смешанную со спиртом.

Яйцо без скорлупы


Сырое яйцо положить в уксус минимум на сутки, некоторое говорят на неделю. И фокус готов! Яйцо без твердой скорлупы.
Скорлупа яйца в изобилии со­держит кальций. Уксус вступает в активную реакцию с кальцием и постепенно растворяет его. В ре­зультате яйцо оказывается покрыто плёнкой, но совершенно без скор­лупы. На ощупь оно похоже на эла­стичный мячик.
А ещё яйцо будет больше своего пер­воначального размера, так как впитает в себя немного уксуса.

Танцующие человечки

Пришло время похулиганить! 2 части крахмала смешать с одной частью воды. Поставить миску с крахмальной жидкостью на динамики и включить погромче басы!

Разукрашиваем лед



Разной формы ледяные фигурки разукрашиваем при помощи, размешенной с водой и солью, пищевой краски. Соль разъедает лед и просачивается глубоко, образовывая интересные проходы. Прекрасная идея цветотерапии.

Запуск бумажных ракет

Пакеты с чаем освобождаем от чая, отрезав верхушку. Поджигаем! Теплый воздух поднимает пакет!

Опытов так много, что у вас точно найдется занятие с детками, только выбирайте! И не забудьте снова прийти за новой статьей, о которой узнаете, если оформите подписку! Приглашайте и друзей к нам в гости! А на сегодня все! Пока!

Сотни тысяч физических опытов было поставлено за тысячелетнюю историю науки. Сложно отобрать несколько «самых-самых».Среди физиков США и Западной Европы был проведен опрос. Исследователи Роберт Криз и Стони Бук просили их назвать наиболее красивые за всю историю физические эксперименты. Об опытах, вошедших в первую десятку по итогам выборочного опроса Криза и Бука, рассказал научный работник Лаборатории нейтринной астрофизики высоких энергий, кандидат физико-математических наук Игорь Сокальский.

1. Эксперимент Эратосфена Киренского

Один из самых древних известных физических экспериментов, в результате которого был измерен радиус Земли, был проведен в III веке до нашей эры библиотекарем знаменитой Александрийской библиотеки Эрастофеном Киренским. Схема эксперимента проста. В полдень, в день летнего солнцестояния, в городе Сиене (ныне Асуан) Солнце находилось в зените и предметы не отбрасывали тени. В тот же день и в то же время в городе Александрии, находившемся в 800 километрах от Сиена, Солнце отклонялось от зенита примерно на 7°. Это составляет около 1/50 полного круга (360°), откуда получается, что окружность Земли равна 40 000 километров, а радиус 6300 километров. Почти невероятным представляется то, что измеренный столь простым методом радиус Земли оказался всего на 5% меньше значения, полученного самыми точными современными методами, сообщает сайт «Химия и жизнь».

2. Эксперимент Галилео Галилея

В XVII веке господствовала точка зрения Аристотеля, который учил, что скорость падения тела зависит от его массы. Чем тяжелее тело, тем быстрее оно падает. Наблюдения, которые каждый из нас может проделать в повседневной жизни, казалось бы, подтверждают это. Попробуйте одновременно выпустить из рук легкую зубочистку и тяжелый камень. Камень быстрее коснется земли. Подобные наблюдения привели Аристотеля к выводу о фундаментальном свойстве силы, с которой Земля притягивает другие тела. В действительности на скорость падения влияет не только сила притяжения, но и сила сопротивления воздуха. Соотношение этих сил для легких предметов и для тяжелых различно, что и приводит к наблюдаемому эффекту.

Итальянец Галилео Галилей усомнился в правильности выводов Аристотеля и нашел способ их проверить. Для этого он сбрасывал с Пизанской башни в один и тот же момент пушечное ядро и значительно более легкую мушкетную пулю. Оба тела имели примерно одинаковую обтекаемую форму, поэтому и для ядра, и для пули силы сопротивления воздуха были пренебрежимо малы по сравнению с силами притяжения. Галилей выяснил, что оба предмета достигают земли в один и тот же момент, то есть скорость их падения одинакова.

Результаты, полученные Галилеем, - следствие закона всемирного тяготения и закона, в соответствии с которым ускорение, испытываемое телом, прямо пропорционально силе, действующей на него, и обратно пропорционально массе.

3. Другой эксперимент Галилео Галилея

Галилей замерял расстояние, которое шары, катящиеся по наклонной доске, преодолевали за равные промежутки времени, измеренный автором опыта по водяным часам. Ученый выяснил, что если время увеличить в два раза, то шары прокатятся в четыре раза дальше. Эта квадратичная зависимость означала, что шары под действием силы тяжести движутся ускоренно, что противоречило принимаемому на веру в течение 2000 лет утверждению Аристотеля о том, что тела, на которые действует сила, движутся с постоянной скоростью, тогда как если сила не приложена к телу, то оно покоится. Результаты этого эксперимента Галилея, как и результаты его эксперимента с Пизанской башней, в дальнейшем послужили основой для формулирования законов классической механики.

4. Эксперимент Генри Кавендиша

После того как Исаак Ньютон сформулировал закон всемирного тяготения: сила притяжения между двумя телами с массами Мит, удаленных друг от друга на расстояние r, равна F=γ (mM/r2), оставалось определить значение гравитационной постоянной γ - Для этого нужно было измерить силу притяжения между двумя телами с известными массами. Сделать это не так просто, потому что сила притяжения очень мала. Мы ощущаем силу притяжения Земли. Но почувствовать притяжение даже очень большой оказавшейся поблизости горы невозможно, поскольку оно очень слабо.

Нужен был очень тонкий и чувствительный метод. Его придумал и применил в 1798 году соотечественник Ньютона Генри Кавендиш. Он использовал крутильные весы - коромысло с двумя шариками, подвешенное на очень тонком шнурке. Кавендиш измерял смещение коромысла (поворот) при приближении к шарикам весов других шаров большей массы. Для увеличения чувствительности смещение определялось по световым зайчикам, отраженным от зеркал, закрепленных на шарах коромысла. В результате этого эксперимента Кавендишу удалось довольно точно определить значение гравитационной константы и впервые вычислить массу Земли.

5. Эксперимент Жана Бернара Фуко

Французский физик Жан Бернар Леон Фуко в 1851 году экспериментально доказал вращение Земли вокруг своей оси с помощью 67-метрового маятника, подвешенного к вершине купола парижского Пантеона. Плоскость качания маятника сохраняет неизменное положение по отношению к звездам. Наблюдатель же, находящийся на Земле и вращающийся вместе с ней, видит, что плоскость вращения медленно поворачивается в сторону, противоположную направлению вращения Земли.

6. Эксперимент Исаака Ньютона

В 1672 году Исаак Ньютон проделал простой эксперимент, который описан во всех школьных учебниках. Затворив ставни, он проделал в них небольшое отверстие, сквозь которое проходил солнечный луч. На пути луча была поставлена призма, а за призмой - экран. На экране Ньютон наблюдал «радугу»: белый солнечный луч, пройдя через призму, превратился в несколько цветных лучей - от фиолетового до красного. Это явление называется дисперсией света.

Сэр Исаак был не первым, наблюдавшим это явление. Уже в начале нашей эры было известно, что большие монокристаллы природного происхождения обладают свойством разлагать свет на цвета. Первые исследования дисперсии света в опытах со стеклянной треугольной призмой еще до Ньютона выполнили англичанин Хариот и чешский естествоиспытатель Марци.

Однако до Ньютона подобные наблюдения не подвергались серьезному анализу, а делавшиеся на их основе выводы не перепроверялись дополнительными экспериментами. И Хариот, и Марци оставались последователями Аристотеля, который утверждал, что различие в цвете определяется различием в количестве темноты, «примешиваемой» к белому свету. Фиолетовый цвет, по Аристотелю, возникает при наибольшем добавлении темноты к свету, а красный - при наименьшем. Ньютон же проделал дополнительные опыты со скрещенными призмами, когда свет, пропущенный через одну призму, проходит затем через другую. На основании совокупности проделанных опытов он сделал вывод о том, что «никакого цвета не возникает из белизны и черноты, смешанных вместе, кроме промежуточных темных

количество света не меняет вида цвета». Он показал, что белый свет нужно рассматривать как составной. Основными же являются цвета от фиолетового до красного.

Этот эксперимент Ньютона служит замечательным примером того, как разные люди, наблюдая одно и то же явление, интерпретируют его по-разному и только те, кто подвергает сомнению свою интерпретацию и ставит дополнительные опыты, приходят к правильным выводам.

7. Эксперимент Томаса Юнга

До начала XIX века преобладали представления о корпускулярной природе света. Свет считали состоящим из отдельных частиц - корпускул. Хотя явления дифракции и интерференции света наблюдал еще Ньютон («кольца Ньютона»), общепринятая точка зрения оставалась корпускулярной.

Рассматривая волны на поверхности воды от двух брошенных камней, можно заметить, как, накладываясь друг на друга, волны могут интерферировать, то есть взаимогасить либо взаимоусиливать друг друга. Основываясь на этом, английский физик и врач Томас Юнг проделал в 1801 году опыты с лучом света, который проходил через два отверстия в непрозрачном экране, образуя, таким образом, два независимых источника света, аналогичных двум брошенным в воду камням. В результате он наблюдал интерференционную картину, состоящую из чередующихся темных и белых полос, которая не могла бы образоваться, если бы свет состоял из корпускул. Темные полосы соответствовали зонам, где световые волны от двух щелей гасят друг друга. Светлые полосы возникали там, где световые волны взаимоусиливались. Таким образом была доказана волновая природа света.

8. Эксперимент Клауса Йонссона

Немецкий физик Клаус Йонссон провел в 1961 году эксперимент, подобный эксперименту Томаса Юнга по интерференции света. Разница состояла в том, что вместо лучей света Йонссон использовал пучки электронов. Он получил интерференционную картину, аналогичную той, что Юнг наблюдал для световых волн. Это подтвердило правильность положений квантовой механики о смешанной корпускулярно-волновой природе элементарных частиц.

9. Эксперимент Роберта Милликена

Представление о том, что электрический заряд любого тела дискретен (то есть состоит из большего или меньшего набора элементарных зарядов, которые уже не подвержены дроблению), возникло еще в начале XIX века и поддерживалось такими известными физиками, как М.Фарадей и Г.Гельмгольц. В теорию был введен термин «электрон», обозначавший некую частицу - носитель элементарного электрического заряда. Этот термин, однако, был в то время чисто формальным, поскольку ни сама частица, ни связанный с ней элементарный электрический заряд не были обнаружены экспериментально. В 1895 году К.Рентген во время экспериментов с разрядной трубкой обнаружил, что ее анод под действием летящих из катода лучей способен излучать свои, Х-лучи, или лучи Рентгена. В том же году французский физик Ж.Перрен экспериментально доказал, что катодные лучи - это поток отрицательно заряженных частиц. Но, несмотря на колоссальный экспериментальный материал, электрон оставался гипотетической частицей, поскольку не было ни одного опыта, в котором участвовали бы отдельные электроны.

Американский физик Роберт Милликен разработал метод, ставший классическим примером изящного физического эксперимента. Милликену удалось изолировать в пространстве несколько заряженных капелек воды между пластинами конденсатора. Освещая рентгеновскими лучами, можно было слегка ионизировать воздух между пластинами и изменять заряд капель. При включенном поле между пластинами капелька медленно двигалась вверх под действием электрического притяжения. При выключенном поле она опускалась под действием гравитации. Включая и выключая поле, можно было изучать каждую из взвешенных между пластинами капелек в течение 45 секунд, после чего они испарялись. К 1909 году удалось определить, что заряд любой капельки всегда был целым кратным фундаментальной величине е (заряд электрона). Это было убедительным доказательством того, что электроны представляли собой частицы с одинаковыми зарядом и массой. Заменив капельки воды капельками масла, Милликен получил возможность увеличить продолжительность наблюдений до 4,5 часа и в 1913 году, исключив один за другим возможные источники погрешностей, опубликовал первое измеренное значение заряда электрона: е = (4,774 ± 0,009)х 10-10 электростатических единиц.

10. Эксперимент Эрнста Резерфорда

К началу XX века стало понятно, что атомы состоят из отрицательно заряженных электронов и какого-то положительного заряда, благодаря которому атом остается в целом нейтральным. Однако предположений о том, как выглядит эта «положительно-отрицательная» система, было слишком много, в то время как экспериментальных данных, которые позволили бы сделать выбор в пользу той или иной модели, явно недоставало. Большинство физиков приняли модель Дж.Дж.Томсона: атом как равномерно заряженный положительный шар диаметром примерно 108 см с плавающими внутри отрицательными электронами.

В 1909 году Эрнст Резерфорд (ему помогали Ганс Гейгер и Эрнст Марсден) поставил эксперимент, чтобы понять действительную структуру атома. В этом эксперименте тяжелые положительно заряженные а-частицы, движущиеся со скоростью 20 км/с, проходили через тонкую золотую фольгу и рассеивались на атомах золота, отклоняясь от первоначального направления движения. Чтобы определить степень отклонения, Гейгер и Марсден должны были с помощью микроскопа наблюдать вспышки на пластине сцинтиллятора, возникавшие там, где в пластину попадала а-частица. За два года было сосчитано около миллиона вспышек и доказано, что примерно одна частица на 8000 в результате рассеяния изменяет направление движения более чем на 90° (то есть поворачивает назад). Такого никак не могло происходить в «рыхлом» атоме Томсона. Результаты однозначно свидетельствовали в пользу так называемой планетарной модели атома - массивное крохотное ядро размерами примерно 10-13 см и электроны, вращающиеся вокруг этого ядра на расстоянии около 10-8 см.

Современные физические эксперименты значительно сложнее экспериментов прошлого. В одних приборы размещают на площадях в десятки тысяч квадратных километров, в других заполняют объем порядка кубического километра. А третьи вообще скоро будут проводить на других планетах.

August 2nd, 2015

Дети всегда стараются узнать что-то новое каждый день, и у них всегда много вопросов. Им можно объяснять некоторые явления, а можно наглядно показать, как работает та или иная вещь, тот или иной феномен. В этих экспериментах дети не только узнают что-то новое, но и научатся создавать разные поделки , с которыми далее смогут играть.

1. Опыты для детей: лимонный вулкан

Вам понадобится:

2 лимона (на 1 вулкан)

Пищевая сода

Пищевые красители или акварельные краски

Средство для мытья посуды

Деревянная палочка или ложечка (при желании)

1. Срежьте нижнюю часть лимона, чтобы его можно было поставить на ровную поверхность.

2. С обратной стороны вырежьте кусок лимона, как показано на изображении.

* Можно отрезать пол лимона и сделать открытый вулкан.

3. Возьмите второй лимон, разрежьте его наполовину и выдавите из него сок в чашку. Это будет резервный лимонный сок.

4. Поставьте первый лимон (с вырезанной частью) на поднос и ложечкой "помните" лимон внутри, чтобы выдавить немного сока. Важно, чтобы сок был внутри лимона.

5. Добавьте внутрь лимона пищевой краситель или акварель, но не размешивайте.

6. Налейте внутрь лимона средство для мытья посуды.

7. Добавьте в лимон полную ложку пищевой соды. Начнется реакция. Палочкой или ложечкой можете размешивать все, что внутри лимона - вулкан начнется пениться.

8. Чтобы реакция продолжалась дольше, можете добавлять постепенно еще соды, красители, мыло и резервный лимонный сок.

2. Домашние опыты для детей: электрические угри из жевательных червяков

Вам понадобится:

2 стакана

Небольшая емкость

4-6 жевательных червяков

3 столовые ложки пищевой соды

1/2 ложки уксуса

1 чашка воды

Ножницы, кухонный или канцелярский нож.

1. Ножницами или ножом разрежьте вдоль (именно вдоль - это будет непросто, но наберитесь терпения) каждого червяка на 4 (или более) частей.

* Чем меньше кусочек, тем лучше.

* Если ножницы не хотят нормально резать, попробуйте промыть их водой с мылом.

2. В стакане размешайте воду и пищевую соду.

3. Добавьте в раствор воды и соды кусочки червяков и размешайте.

4. Оставьте червячков в растворе на 10-15 минут.

5. С помощью вилки переместите кусочки червяков на небольшую тарелку.

6. Налейте пол ложки уксуса в пустой стакан и начните по очереди класть в него червячков.

* Эксперимент можно повторить, если промыть червячков обычной водой. Спустя несколько попыток ваши червячки начнут растворяться, и тогда придется нарезать новую партию.

3. Опыты и эксперименты: радуга на бумаге или как свет отражается на ровной поверхности

Вам понадобится:

Миска с водой

Прозрачный лак для ногтей

Маленькие кусочки черной бумаги.

1. Добавьте в миску с водой 1-2 капли прозрачного лака для ногтей. Посмотрите, как лак расходится по воде.

2. Быстро (спустя 10 секунд) окуните кусок черной бумаги в миску. Выньте его и дайте высохнуть на бумажном полотенце.

3. После того, как бумага высохла (это происходит быстро) начните поворачивать бумагу и посмотрите на радугу, которая отображается на ней.

* Чтобы лучше увидеть радугу на бумаге, смотрите на нее под солнечными лучами.

4. Опыты в домашних условиях: дождевое облако в банке

Когда маленькие капли воды скапливаются в облаке, они становятся все тяжелее и тяжелее. В итоге они достигнут такого веса, что больше не смогут оставаться в воздухе и начнут падать на землю - так появляется дождь.

Это явление можно показать детям с помощью простых материалов.

Вам понадобится:

Пена для бритья

Пищевой краситель.

1. Наполните банку водой.

2. Сверху нанесите пену для бритья - это будет облако.

3. Пусть ребенок начнет капать пищевой краситель на "облако", пока не начнется "дождь" - капли красителя начнут падать на дно банки.

Во время эксперимента объясните данное явление ребенку.

Вам понадобится:

Теплая вода

Подсолнечное масло

4 пищевых красителя

1. Наполните банку на 3/4 теплой водой.

2. Возьмите миску и размешайте в ней 3-4 ложки масла и несколько капель пищевых красителей. В данном примере было использовано по 1 капле каждого их 4-х красителей - красный, желтый, синий и зеленый.

3. Вилкой размешайте красители и масло.

4. Аккуратно налейте смесь в банку с теплой водой.

5. Посмотрите, что произойдет - пищевой краситель начнет медленно опускаться через масло в воду, после чего каждая капля начнет рассеиваться и смешиваться с другими каплями.

* Пищевой краситель растворяется в воде, но не в масле, т.к. плотность масла меньше воды (поэтому оно и "плавает" на воде). Капля красителя тяжелее масла, поэтому она начнет погружаться, пока не дойдет до воды, где начнет рассеиваться и походить на небольшой фейерверк.

6. Интересные опыты: в олчок, в котором сливаются цвета


Вам понадобится:

- распечатка колеса (или можете вырезать свое колесо и нарисовать на нем все цвета радуги)

Резинка или толстая нить

Клей-карандаш

Ножницы

Шпажка или отвертка (чтобы сделать отверстия в бумажном колесе).

1. Выберите и распечатайте два шаблона, которые вы хотите использовать.

2. Возьмите кусок картона и с помощью клея-карандаша приклейте один шаблон к картону.

3. Вырежьте приклеенный круг из картона.

4. К обратной стороне картонного круга приклейте второй шаблон.

5. Шпажкой или отверткой сделайте два отверстия в круге.

6. Просуньте нить через отверстия и завяжите концы в узел.

Теперь можете крутить ваш волчок и смотреть, как сливаются цвета на кругах.

7. Опыты для детей в домашних условиях: медуза в банке

Вам понадобится:

Небольшой прозрачный полиэтиленовый пакет

Прозрачная пластиковая бутылка

Пищевой краситель

Ножницы.

1. Положите полиэтиленовый пакет на ровную поверхность и разгладьте его.

2. Отрежьте дно и ручки пакета.

3. Разрежьте пакет вдоль справа и слева, чтобы у вас получились два листа из полиэтилена. Вам понадобится один лист.

4. Найдите центр полиэтиленового листа и сложите его как шарик, чтобы сделать голову медузы. Завяжите ниткой в области "шеи" медузы, но не слишком туго - вам нужно оставить небольшое отверстие, чтобы через него налить воду в голову медузы.

5. Голова есть, теперь перейдем к щупальцам. Сделайте надрезы в листе - от низа до головы. Вам нужно примерно 8-10 щупальцев.

6. Каждое щупальце разрежьте еще на 3-4 более мелкие детали.

7. Налейте немного воды в голову медузы, оставив место для воздуха, чтобы медуза могла "плавать" в бутылке.

8. Наполните бутылку водой и засуньте в нее вашу медузу.

9. Капните пару капель синего или зеленого пищевого красителя.

* Закройте плотно крышку, чтобы вода не выливалась.

* Пусть дети переворачивают бутылку, и смотрят, как в ней плавает медуза.

8. Химические опыты: магические кристаллы в стакане

Вам понадобится:

Стеклянный стакан или миска

Пластиковая миска

1 чашка соли Эпсома (сульфат магния) - используется в солях для ванн

1 чашка горячей воды

Пищевой краситель.

1. Насыпьте соль Эпсома в миску и добавьте горячей воды. Можете добавить в миску пару капель пищевого красителя.

2. В течение 1-2 минут размешивайте содержимое миски. Большая часть гранул соли должна раствориться.

3. Налейте раствор в стакан или бокал и поместите его в морозилку на 10-15 минут. Не волнуйтесь, раствор не настолько горяч, чтобы стакан треснул.

4. После морозилки переместите раствор в основную камеру холодильника, желательно на верхнюю полку и оставьте на ночь.

Рост кристаллов будет заметен лишь спустя несколько часов, но лучше переждать ночь.

Вот как выглядят кристаллы на следующий день. Помните, что кристаллы очень хрупки. Если дотронуться до них, они вероятнее всего сразу сломаются или рассыплются.

В продолжение темы:
Отношения

В мире не существует женщины, которая бы не хотела обладать стройной, подтянутой фигурой,плоским животом и женственными боками. Простого желания, как правило, недостаточно и...

Новые статьи
/
Популярные